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Abstract—Gaussian convolution has many science and engi-
neering applications, and is widely applied to computer vision
and image processing tasks. Due to its computational expense and
rapid spreading of high quality data (bit depth/dynamic range),
accurate approximation has become important in practice com-
pared with conventional fast methods. In this paper we propose
a novel approximation method for fast Gaussian convolution of
2D images. Our method employs L1 distance metric to achieve
fast computations while preserving high accuracy. Our numerical
experiments show the advantages over conventional methods in
terms of speed and precision.
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I. INTRODUCTION

Gaussian convolution is a core tool in mathematics and
many related research areas, such as probability theory,
physics, and signal processing. Gauss transform is a discrete
analogue to the Gaussian convolution, and has been widely
used for many applications including kernel density estimation
[1] and image filtering [2]. Despite its reliable performance and
solid theoretical foundations, Gauss transform in its exact form
along with other kernel-based methods has a drawback – it is
very computationally expensive (has quadratic computational
complexity w.r.t. the number of points) and hard to scale
to higher dimensions. Which is why there have been many
attempts to overcome these problems by creating approxi-
mation algorithms, such as fast Gauss transform [3], dual-
tree fast Gauss transforms [4], fast KDE [5], and Gaussian
kd-trees [6]. Also, box kernel averaging [7] and recursive
filtering [8] have been popular in computer graphics and image
processing because of their simplicity, see the surveys [9], [10]
for numerical comparisons of these approximation methods.

Since high bit depth (also dynamic range) images have
become popular in both digital entertainment and scien-
tific/engineering applications, it is very important to acquire
high approximation precision and to reduce artifacts cased
by drastic truncation employed in many conventional methods
focused on computational speed. One of the highly accurate
methods is called fast L1 Gauss transform approximation
[11] based on using L1 distance instead of conventional
L2 Euclidean metric. This L1 metric preserves most of the
properties of the L2 Gaussian, and is separable, hence it allows
to perform computations along each dimension separately,
which is very beneficial in terms of computational complexity.
Also, L1 Gaussian has only one peak in Fourier domain at

the coordinate origin, and therefore its convolution does not
have some undesirable artifacts that box kernels and truncation
methods usually have. However, this algorithm works only
on one-dimensional (1D) point sets, although it can be ex-
tended to uniformly distributed points in higher dimensions
by performing it separately in each dimension. In order to be
able to acquire Gauss transform for non-uniformly distributed
two-dimensional points and to further generalize it to higher
dimensional cases, we need to extend existing method [11] to
the 2D uniform case.

In this paper we propose a novel approximation method
for fast Gauss two-dimensional (2D) image transform. Our
method is based on extending the fast L1 Gauss transform
approximation on uniformly distributed 2D points that allows
to perform Gaussian convolution quickly while preserving
high accuracy. We demonstrate that efficiency of the proposed
method in terms of computational complexity, numerical tim-
ing, and approximation precision.

II. FAST L1 GAUSS TRANSFORM

In this section, we briefly describe the 1D domain splitting
algorithm [11] employed for fast L1 Gauss transforms.

Consider the ordered point set X = {xi}Ni=1, xi ∈ R, xi ≥
xi−1, ∀i = 2, N . Each point xi has a corresponding value
Ii ∈ R, e.g. pixel intensity in case of images. The L1 Gauss
transform for each point in set X is given by

J(xj) =

N∑
i=1

G(xj − xi)Ii, G(x) = exp(−|x|
σ
), (1)

where G(x), x ∈ R, is a L1 Gaussian function (also called
Laplace distribution in statistics) with its standard deviation σ.
It is convenient to decompose L1 norm by splitting its domain
by using the point x1 such that

|xj − xi| =
{
|xj − x1| − |xi − x1| if x1 ≤ xi ≤ xj ,
|xi − x1| − |xj − x1| if x1 ≤ xj ≤ xi.

(2)

Thus, Gauss transform (1) using the equation (2) becomes

J(xj) = Ii +G(xj − x1)
j−1∑
i=1

Ii
G(xi − x1)

+

+
1

G(xj − x1)

N∑
i=j+1

G(xi − x1)Ii.
(3)



Such representation (3) allows to reduce the amount of com-
putational operations, since values G(xj − x1), 1

G(xj−x1)
,

and the sums
∑j−1
i=1

Ii
G(xi−x1)

and
∑N
j+1 IiG(xi − x1) can

be precomputed in linear time. However, using the equation
(3) may imply some numerical issues, such as overflow, if
the distance between x1 and xl, l ∈ {i, j} is relatively
large. To avoid such issues, this algorithm introduced certain
representative points (poles) {αk ∈ R} instead of using the
single point x1, where the distance between αk and xl is
smaller than the length that causes the numerical instability.
Hence the equation (3) becomes more complex form, a highly
accurate truncation can be applied where G(αk −xj) is equal
to numerically zero, see [11] for further technical details.

Although this algorithm can be used in case of multidimen-
sional images by applying it separately in each dimension, this
separable implementation approach is not applicable to non-
uniformly distributed high-dimensional point sets. Therefore
we present a novel and natural extension of the domain split-
ting concept on 2D cases (images) in the following sections.

III. TWO-DIMENSIONAL ALGORITHM

For a given 2D point set X = {xi}Ni=1, xi = (xi, yi) ∈ R2,
L1 distance between two points in R2 is given by |xj −xi| =
|xj−xi|+|yj−yi|, thus the Gauss transform (1) is represented
by the formula:

J(xj) =

N∑
i=1

exp(−|xj − xi|+ |yj − yi|
σ

)Ii.

Domain splitting (2) for 2D points is given by

|xj − xi|+ |yj − yi| =
|xj − x1| − |xi − x1|+ |yj − y1| − |yi − y1| if xi ∈ D1

|xi − x1| − |xj − x1|+ |yj − y1| − |yi − y1| if xi ∈ D2

|xj − x1| − |xi − x1|+ |yi − y1| − |yj − y1| if xi ∈ D3

|xi − x1| − |xj − x1|+ |yi − y1| − |yj − y1| if xi ∈ D4,

D1 = {xi|x1 ≤ xi ≤ xj , y1 ≤ yi ≤ yj},
D2 = {xi|x1 ≤ xj ≤ xi, y1 ≤ yi ≤ yj},
D3 = {xi|x1 ≤ xi ≤ xj , y1 ≤ yj ≤ yi},
D4 = {xi|x1 ≤ xj ≤ xi, y1 ≤ yj ≤ yi},

see Fig. 1a for geometric illustration of the domains.

(a) Single pole x1 case (b) Multipole {αk} case

Fig. 1: Illustration of 2D domain splliting.

Using the above decomposition, Gauss transform is repre-
sented similar to (3):

J(xj) = I(xj) + F (xj)F (yj)
∑

xi∈D1(j)

1

F (xi)F (yi)
I(xi)+

+
F (xj)

F (yj)

∑
xi∈D2(j)

F (yi)

F (xi)
I(xi) +

F (yj)

F (xj)

∑
xi∈D3(j)

F (xi)

F (yi)
I(xi)+

+
1

F (xj)F (yj)

∑
xi∈D4(j)

F (xi)F (yi)I(xi),

(4)

where F (xj) ≡ G(xj − x1) and F (yj) ≡ G(yj − y1).

Precomputation and storage of values F (xj)F (yj),
F (xj)
F (yj)

,
1

F (xj)F (yj)
, and F (yj)

F (xj)
require O(4N) operations and O(4N)

space, and all the subsequent sums can be iteratively computed
in O(N) operations. Gauss transform for all points using the
formula (4) requires O(10N) as opposed to employing the sep-
arable implementation of equation (3) for O(6N) operations.
Since computing the Gauss transform using the equation (4) is
numerically troublesome, it is reasonable to divide the space
into smaller groups and perform computations separately, as it
was proposed in [11]. Let us introduce a novel 2D multipole
approach for solving this problem.

Consider a set of poles {αk}Mk=1, αk = (ak, bk) ∈ R2.
The distance between points in X using poles αk is given by
|xi − xj | =

|xi − ak| − |xj − ak|+ |yi − bk| − |yj − bk| if xi ∈ D1

|xj − ak| − |xi − ak|+ |yi − bk| − |yj − bk| if xi ∈ D2

|xi − ak|+ |xj − ak|+ |yi − bk| − |yj − bk| if xi ∈ D3

|xi − ak| − |xj − ak|+ |yj − bk| − |yi − bk| if xi ∈ D4

|xj − ak| − |xi − ak|+ |yj − bk| − |yi − bk| if xi ∈ D5

|xi − ak|+ |xj − ak|+ |yj − bk| − |yi − bk| if xi ∈ D6

|xi − ak| − |xj − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D7

|xj − ak| − |xi − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D8

|xi − ak|+ |xj − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D9,

where

D1 = {xi|xi ∈ Dx
1 , yi ∈ D

y
1}, D2 = {xi|xi ∈ Dx

2 , yi ∈ D
y
1},

D3 = {xi|xi ∈ Dx
3 , yi ∈ D

y
1}, D4 = {xi|xi ∈ Dx

1 , yi ∈ D
y
2},

D5 = {xi|xi ∈ Dx
2 , yi ∈ D

y
2}, D6 = {xi|xi ∈ Dx

3 , yi ∈ D
y
2},

D7 = {xi|xi ∈ Dx
1 , yi ∈ D

y
3}, D8 = {xi|xi ∈ Dx

2 , yi ∈ D
y
3},

D9 = {xi|xi ∈ Dx
3 , yi ∈ D

y
3},

Dx
1 = {xi|ak ≤ xi ≤ xj or xj ≤ xi ≤ ak},

Dx
2 = {xi|ak ≤ xj ≤ xi or xi ≤ xj ≤ ak},

Dx
3 = {xi|xi ≤ ak ≤ xj or xj ≤ ak ≤ xi},

Dy
1 = {yi|bk ≤ yi ≤ yj or yj ≤ yi ≤ bk},

Dy
2 = {yi|bk ≤ yj ≤ yi or yi ≤ yj ≤ bk},

Dy
3 = {yi|yi ≤ bk ≤ yj or yj ≤ bk ≤ yi},



J(xj) = Ij + G(xj)G(yj)
∑

xi∈D1

Ii
G(xi)G(yi)

+
1

G(xj)G(yj)
∑

xi∈D5

G(xi)G(yi)Ii +
G(yj)
G(xj)

∑
xi∈D2

G(xi)
G(yi)

Ii +
G(xj)
G(yj)

∑
xi∈D4

G(yi)
G(xi)

Ii+

+
∑

αk∈D9

Ajk +
∑

αk∈D7

Bj
k +

∑
αk∈D8

Cjk +
∑

αk∈D3

Dj
k +

∑
αk∈D6

Ej
k, (5)

Ajk = G(xj)G(yj)
λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii, Bj
k = G(xj)G(yj)

λ(k+1)−1∑
xi=λ(k)

G(yi)
G(xi)

Ii, Cjk =
G(yj)
G(xj)

λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii,

Dj
k = G(xj)G(yj)

λ(k+1)−1∑
xi=λ(k)

G(xi)
G(yi)

Ii, Ej
k =

G(xj)
G(yj)

λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii.

see Fig. 1b for geometric illustration of the domains with their
poles. The point xj is assigned for one representative pole
defined by

αk(xj) = max
k
{αk|ak ≤ xj , bk ≤ yj},

which is the closest pole to xj that has absolute values of
coordinate smaller than xj .

For each point xj , the multipole L1 Gauss transform is
given by the equation (5) where G(xj) ≡ G(xj−ak), G(yj) ≡
G(yj − bk), and λ(·) is an index function defined by

λ(k) = min
1≤j≤N

(xj |ak ≤ xj < ak+1 and bk ≤ yj < bk+1).

For the sake of simplicity, we assume that the numbers of
poles in 2D are same M . Following [11], M and the poles
{αk} are given by

{ak} = {bk} =
{0, 1, 2, ..., (M − 1)}w

M
, (6)

w = max(|x1 − xN |, |y1 − yN |), M = [
w

ϕσ log(MAX)
],

where [·] is the ceiling function, MAX is the maximum value
of precision (e.g., double floating point: DBL MAX in C
programming language), and ϕ is a user-specified parameter
(0.5 is employed in our numerical experiments). The above
pole selection scheme leads to max(G(ak+1 − ak), G(bk+1 −
bk)) < MAX which theoritically guarantees numerical stability
in our method.

If the distance between poles is determined by the equation
(6) and G(αk − xj) becomes numerically zero if |αk − xj | >
w
ϕM , we can efficiently truncate Gauss transform by approx-
imating the values:∑
αk∈D9

Ajk ≈
∑

αk∈µ(D9)

Ajk,
∑

αk∈D7

Bjk ≈
∑

αk∈µ(D7)

Bjk,∑
αk∈D8

Cjk ≈
∑

αk∈µ(D8)

Cjk,
∑

αk∈D3

Dj
k ≈

∑
αk∈µ(D3)

Dj
k,

∑
αk∈D6

Ejk ≈
∑

αk∈µ(D6)

Ejk,

where µ(D∗) = {xi ∈ D∗ | |αk(xj) − αk(xi)| ≤ w
ϕM }. In

other words, instead of computing terms Ajk, B
j
k, C

j
k, D

j
k, E

j
k

across all the corresponding point sets, we take into account
only the neighbouring points, which allows to avoid nested
loop structure in our implementation and speed up the com-
putational process.

As in the 1D algorithm [11], the terms can be iteratively
computed in linear time. Assume that an image consists
of
√
N ×

√
N pixels and the number of poles along each

dimension is equal to M , total complexity of our method is
equal to O(16N+2

√
N
M +4 N

M2 ), which is a little bit slower than
the separable implementation employed in [11] that requires
O(12N + 2

√
N +M) operations.

IV. NUMERICAL EXPERIMENTS

We held all the experiments on Intel Core i7-6600U 2.60
GHz dual core computer with 16GB RAM and a 64-bit
operating system. We compared the multipole version of our
algorithm with box kernel (Box) using moving average method
[7], the 1D domain splitting (YY14) with separable implemen-
tations [11], and Fast Discrete Cosine Transform (FDCT) via
the FFT package [12] well-known for its efficiency.

(a) Input image 1 (b) Input image 2

Fig. 2: Input images.

To evaluate the performance of the methods mentioned
above we used randomly generated 2D point sets with 10
different sizes from 1282 to 51202 and 10 various values of
σ = 5, 10, ..., 50. The radius for the Box method was chosen
equal to σ. The timing results (see Fig. 5) show that our method
is slightly slower than the 1D domain splitting (YY14) despite
its theoretical complexity is much larger. It is worth noticing



(a) Exact (b) Our (c) Box (d) FDCT

Fig. 3: Results of smoothing (σ = 20).

(a) Exact (b) Our (c) Box (d) FDCT

(e) Exact (f) Our (g) Box (h) FDCT

Fig. 4: Visualisation of |∇I| for comparison of artifacts (σ = 20).

Fig. 5: Timing with respect to image size (averaged by σ).

that the implementation of our method can be further improved
by using GPU-based or parallel computing techniques.

However, accuracy evaluation results (see Table I) show
that our method achieves best approximation quality among the
discussed methods. We evaluate the precision using Emax and
PSNR measures. Consider Ie is the exact L1 Gauss transform
result, Ia is the approximation achieved by a given algorithm,
and di = |Iei − Iai |, Emax is calculated using formula Emax =
max

1≤i≤N
di. We also use peak signal-to-noise ratio (PSNR) [2]

to measure the performance of our algorithm according to the
equation

PSNR = −10 log(
N∑
i=1

(
di

max(Iei , I
a
i )

)2).

We performed linear image smoothing by the following
normalized convolutions for each color channel:∫

G(x− y)I(y)dy∫
G(x− y)dy

→ J(xj)∑N
i G(xj − xi)



TABLE I: Precision and speed evaluation results (speed mea-
sured in Mpix/sec).

Our YY14 FDCT Box
Emax 1.8× 10−11 3.8× 10−10 0.44 3.73
PSNR 291.05 281.81 58.98 41.45
Speed 7.19 9.76 3.37 8.58

(a) Exact (b) Our (c) FDCT

(d) Exact (e) Our (f) FDCT

Fig. 6: Visualisation of |∇I| for comparison of artifacts of
FDCT (σ = 20).

where the denominator is also obtained by our method con-
volving L1 Gaussian with the image whose intensity is equal
to one everywhere.

Fig. 3 illustrates the smoothing results using naive im-
plementation (Exact), our method, Box kernel, and FDCT
algorithms. The gradient magnitude |∇I| of smoothed images
on Fig. 4 and 6 show that, in contrast to FDCT and Box kernel,
our method does not produce some undesirable artifacts and
is extremely close to the exact implementation.

V. CONCLUSION

In this paper we presented a novel and fast approximation
method for L1 Gauss 2D image transforms. Series of numerical
experiments have shown that our method is generally more
accurate than the conventional methods and faster than the
widely used FFT. We also demonstrated capability of the
proposed method in image smoothing application where the
conventional box kernel averaging and FFT both suffer from
undesirable artifacts. Despite our method is slightly slower
than the separable implementations of 1D algorithm [11], this
approach can be efficiently used for non-uniformly distributed
points.

Our method is applicable only to uniformly distributed
structures, such as images. Hence our future work includes
extending the proposed method to higher-dimensional non-
uniform cases which can be done for example by using tree-
like structures. We also would like to investigate possible ap-
plications of the proposed method to various machine learning

and image processing tasks, such as regression, segmentation,
and registration.
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